3.1580 \(\int \frac{\sqrt [3]{c+d x}}{(a+b x)^{13/3}} \, dx\)

Optimal. Leaf size=101 \[ -\frac{27 d^2 (c+d x)^{4/3}}{140 (a+b x)^{4/3} (b c-a d)^3}+\frac{9 d (c+d x)^{4/3}}{35 (a+b x)^{7/3} (b c-a d)^2}-\frac{3 (c+d x)^{4/3}}{10 (a+b x)^{10/3} (b c-a d)} \]

[Out]

(-3*(c + d*x)^(4/3))/(10*(b*c - a*d)*(a + b*x)^(10/3)) + (9*d*(c + d*x)^(4/3))/(35*(b*c - a*d)^2*(a + b*x)^(7/
3)) - (27*d^2*(c + d*x)^(4/3))/(140*(b*c - a*d)^3*(a + b*x)^(4/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0173515, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {45, 37} \[ -\frac{27 d^2 (c+d x)^{4/3}}{140 (a+b x)^{4/3} (b c-a d)^3}+\frac{9 d (c+d x)^{4/3}}{35 (a+b x)^{7/3} (b c-a d)^2}-\frac{3 (c+d x)^{4/3}}{10 (a+b x)^{10/3} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(1/3)/(a + b*x)^(13/3),x]

[Out]

(-3*(c + d*x)^(4/3))/(10*(b*c - a*d)*(a + b*x)^(10/3)) + (9*d*(c + d*x)^(4/3))/(35*(b*c - a*d)^2*(a + b*x)^(7/
3)) - (27*d^2*(c + d*x)^(4/3))/(140*(b*c - a*d)^3*(a + b*x)^(4/3))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt [3]{c+d x}}{(a+b x)^{13/3}} \, dx &=-\frac{3 (c+d x)^{4/3}}{10 (b c-a d) (a+b x)^{10/3}}-\frac{(3 d) \int \frac{\sqrt [3]{c+d x}}{(a+b x)^{10/3}} \, dx}{5 (b c-a d)}\\ &=-\frac{3 (c+d x)^{4/3}}{10 (b c-a d) (a+b x)^{10/3}}+\frac{9 d (c+d x)^{4/3}}{35 (b c-a d)^2 (a+b x)^{7/3}}+\frac{\left (9 d^2\right ) \int \frac{\sqrt [3]{c+d x}}{(a+b x)^{7/3}} \, dx}{35 (b c-a d)^2}\\ &=-\frac{3 (c+d x)^{4/3}}{10 (b c-a d) (a+b x)^{10/3}}+\frac{9 d (c+d x)^{4/3}}{35 (b c-a d)^2 (a+b x)^{7/3}}-\frac{27 d^2 (c+d x)^{4/3}}{140 (b c-a d)^3 (a+b x)^{4/3}}\\ \end{align*}

Mathematica [A]  time = 0.0400891, size = 77, normalized size = 0.76 \[ -\frac{3 (c+d x)^{4/3} \left (35 a^2 d^2+10 a b d (3 d x-4 c)+b^2 \left (14 c^2-12 c d x+9 d^2 x^2\right )\right )}{140 (a+b x)^{10/3} (b c-a d)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(1/3)/(a + b*x)^(13/3),x]

[Out]

(-3*(c + d*x)^(4/3)*(35*a^2*d^2 + 10*a*b*d*(-4*c + 3*d*x) + b^2*(14*c^2 - 12*c*d*x + 9*d^2*x^2)))/(140*(b*c -
a*d)^3*(a + b*x)^(10/3))

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 105, normalized size = 1. \begin{align*}{\frac{27\,{b}^{2}{d}^{2}{x}^{2}+90\,ab{d}^{2}x-36\,{b}^{2}cdx+105\,{a}^{2}{d}^{2}-120\,abcd+42\,{b}^{2}{c}^{2}}{140\,{a}^{3}{d}^{3}-420\,{a}^{2}cb{d}^{2}+420\,a{b}^{2}{c}^{2}d-140\,{b}^{3}{c}^{3}} \left ( dx+c \right ) ^{{\frac{4}{3}}} \left ( bx+a \right ) ^{-{\frac{10}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/3)/(b*x+a)^(13/3),x)

[Out]

3/140*(d*x+c)^(4/3)*(9*b^2*d^2*x^2+30*a*b*d^2*x-12*b^2*c*d*x+35*a^2*d^2-40*a*b*c*d+14*b^2*c^2)/(b*x+a)^(10/3)/
(a^3*d^3-3*a^2*b*c*d^2+3*a*b^2*c^2*d-b^3*c^3)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{3}}}{{\left (b x + a\right )}^{\frac{13}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(13/3),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(13/3), x)

________________________________________________________________________________________

Fricas [B]  time = 1.75163, size = 689, normalized size = 6.82 \begin{align*} -\frac{3 \,{\left (9 \, b^{2} d^{3} x^{3} + 14 \, b^{2} c^{3} - 40 \, a b c^{2} d + 35 \, a^{2} c d^{2} - 3 \,{\left (b^{2} c d^{2} - 10 \, a b d^{3}\right )} x^{2} +{\left (2 \, b^{2} c^{2} d - 10 \, a b c d^{2} + 35 \, a^{2} d^{3}\right )} x\right )}{\left (b x + a\right )}^{\frac{2}{3}}{\left (d x + c\right )}^{\frac{1}{3}}}{140 \,{\left (a^{4} b^{3} c^{3} - 3 \, a^{5} b^{2} c^{2} d + 3 \, a^{6} b c d^{2} - a^{7} d^{3} +{\left (b^{7} c^{3} - 3 \, a b^{6} c^{2} d + 3 \, a^{2} b^{5} c d^{2} - a^{3} b^{4} d^{3}\right )} x^{4} + 4 \,{\left (a b^{6} c^{3} - 3 \, a^{2} b^{5} c^{2} d + 3 \, a^{3} b^{4} c d^{2} - a^{4} b^{3} d^{3}\right )} x^{3} + 6 \,{\left (a^{2} b^{5} c^{3} - 3 \, a^{3} b^{4} c^{2} d + 3 \, a^{4} b^{3} c d^{2} - a^{5} b^{2} d^{3}\right )} x^{2} + 4 \,{\left (a^{3} b^{4} c^{3} - 3 \, a^{4} b^{3} c^{2} d + 3 \, a^{5} b^{2} c d^{2} - a^{6} b d^{3}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(13/3),x, algorithm="fricas")

[Out]

-3/140*(9*b^2*d^3*x^3 + 14*b^2*c^3 - 40*a*b*c^2*d + 35*a^2*c*d^2 - 3*(b^2*c*d^2 - 10*a*b*d^3)*x^2 + (2*b^2*c^2
*d - 10*a*b*c*d^2 + 35*a^2*d^3)*x)*(b*x + a)^(2/3)*(d*x + c)^(1/3)/(a^4*b^3*c^3 - 3*a^5*b^2*c^2*d + 3*a^6*b*c*
d^2 - a^7*d^3 + (b^7*c^3 - 3*a*b^6*c^2*d + 3*a^2*b^5*c*d^2 - a^3*b^4*d^3)*x^4 + 4*(a*b^6*c^3 - 3*a^2*b^5*c^2*d
 + 3*a^3*b^4*c*d^2 - a^4*b^3*d^3)*x^3 + 6*(a^2*b^5*c^3 - 3*a^3*b^4*c^2*d + 3*a^4*b^3*c*d^2 - a^5*b^2*d^3)*x^2
+ 4*(a^3*b^4*c^3 - 3*a^4*b^3*c^2*d + 3*a^5*b^2*c*d^2 - a^6*b*d^3)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/3)/(b*x+a)**(13/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{3}}}{{\left (b x + a\right )}^{\frac{13}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(13/3),x, algorithm="giac")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(13/3), x)